Menu
RSS
Portal Ciencia.ao

Portal Ciencia.ao

COVID-19: Tratamento

Ilustração - Tratamento da COVID-191

 

Santos Morais Nicolau1, Paula Regina Oliveira2, Eduardo Ekundi Valentim3, André Pedro Neto4

1Faculdade de Medicina-Universidade Agostinho Neto

2Faculdade de Medicina-Universidade Katyavala Bwila

3Instituti Superior Politécnico-Malanje

4Faculdade de Medicina-Universidade Lueji A N’konde

 

  1. PREÂMBULO

Os fármacos são desenhados com três finalidades, a saber: diagnóstico, terapêutico e profilático. Os mesmos têm a sua origem na natureza: animal, vegetal ou mineral; podendo ser usados tal qual ou purificados, através dos avanços tecnológicos, sintéticos ou semi-sintéticos. É assim, temos hoje a diversidade de fármacos. No entanto, dado o facto dos fármacos não só causarem efeitos benéficos, mas também deletérios, e com base no que aconteceu em 1960 com a talidomida, hoje exigem-se estudos mais aprofundados para a validação da eficácia, segurança e bioequivalência dos medicamentos através do Ensaio Clínico (EC) (World Medical, 2013).

 

  1. ENSAIOS CLÍNICOS

O EC de fármacos é exigido com o objectivo de adquirirem-se informações sobre as propriedades farmacocinéticas e farmacodinâmicas de um potencial medicamento para humanos. Deve ser provada a eficácia e estabelecida uma margem de segurança adequada para o fármaco ser aprovado para comercialização. Actualmente no mundo existem apenas três agências que autorizam a realização de EC: a Food and Drugs Administration (FDA), a Agência Europeia de Medicamentos (EMA) e a Agência Australiana de Medicamentos (AAM). Devem ser apresentados os estudos de síntese, exames e triagem (pesquisa básica) e testes pré-clínicos “em animais” (fase inicial de desenvolvimento) antes de requerem-se os EC, o período de pesquisa básica e testes pré-clínicos pode durar entre seis a dez anos dependendo dos esforços e recursos dos interessados. De entre dez mil a vinte e cinco moléculas submetidas a EC, apenas uma chega a ser introduzida no mercado o que denota a rigorosidade do processo (Adams, 2011; Girard and Vohra, 2011; Mandal et al., 2011; Molewijk et al., 2011).

Superada a fase anterior (comprovada documentalmente) e a idoneidade dos requerentes, uma das Agência onde se submeteu a solicitação do EC autoriza que os EC tenham inicio. Este processo envolve quatro (4) fases e pode ultrapassar os dez anos, o que justifica o encarecimento dos medicamentos novos, pois a patente só é dada por vinte e cinco anos desde o momento de registo da molécula candidata na fase básica(Xie et al., 2007; Xie et al., 2009; Bayer et al., 2011; Chung and Kotsis, 2011; Mandal et al., 2011; Sanmukhani and Tripathi, 2011; Shafiq and Malhotra, 2011; Poirier and Mayer, 2013; World Medical, 2013; Schnipper et al., 2015).

É assim que, os investigadores foram à quimioteca, buscar moléculas que haviam sido retiradas de comercialização e estão em curso os ensaios com cloroquina e hidroxicloroquina, remdesivir, lopinavir, ritonavir, cujos resultados ainda não são conclusivos (Gao et al., 2020; Guo et al., 2020).

 

  1. TERAPÊUTICA ANTI-COVID-19

Os aspectos discutidos acima levam a assegurar porquê é que leva-se tempo disponibilizar-se um novo medicamento. As equipas na diáspora que sempre trabalharam com vírus, na ausência de um protocolo definitivo para manuseamento de casos de COVID-19, têm tentado explorar muitos regimes terapêuticos, sendo que alguns destes mostram que foram testados de modo rápido e outros fazem erigir alguma esperança. Assim, existem esforços virados para: i) a terapia anti-viral, ii) o uso de anticorpo monocolonal, iii) a produção de vacinas (Caskey et al., 2015; Group et al., 2016; Gupta et al., 2016).

Por exemplo, a imunoglobulina humana (Jawhara, 2020), os interferons (Haiyan et al., 2020; Dong et al., 2020), a cloroquina e hidroxicloroquina (Dong et al., 2020; Gau et al., 2020; Gautret et al., 2020; Franke Xavier, 2020), o arbidol (Dong et al., 2020; Wang et al., 2020), o remdesivir, o favipiravir e o seltamivir (Lai et al., 2020; Wang et al., 2020; Zang et al., 2020) estão todos a ser testados e em diversas fases de estudo. Em anexo apresenta-se o quadro resumo de alguns estudos/ensaios feitos e/ou em curso para o tratamento da COVID-19. Além disso, está-se à procura de moléculas candidatas à vacinas, capazes de controlar a Covid-19. No entanto, até o presente momento não há nenhuma que neutralize o SARS-CoV-2. Segundo a OMS (WHO, 2020), até o mês de Fevereiro, havia um total de 21 de estas moléculas em fase pré-clinica e espera-se que na primavera a primeira candidata entre na Fase I (Fauci et al., 2020).

Mas enquanto se estudam essas possibilidades, os pacientes não podem esperar e devem ser atendidos, dada a evolução exponencial da doença comprometendo os órgãos vitais, de tal modo que uma conduta célere na atenção intensiva é recomendável com:

  1. oxigenoterapia
  2. analgésicos
  3. plasma dos pacientes recuperados+IgG (Guo et al., 2020)
  4. outros fármacos de cuidados intensivos.

Recomenda-se o uso do paracetamol, apesar de ter mais efeitos analgésicos do que antipiréticos, desaconselhando-se o ácido acetil-salicílico devido aos seus efeitos de desfosforilação da cadeia respiratória que podem agravar ainda mais a condição destes pacientes comprometidos nas suas vias respiratórias, além de seus efeitos serem irreversível ao nível do bloqueio da prostaglandina endoperóxido sintetase induzida e constituitiva a nível da Ser530 e Ser516 e seus efeitos deletérios a nível hematopoiético (Amann and Peskar, 2002; Bertolini et al., 2006; Ottani et al., 2006).

Em suma, as intervenções não farmacêuticas baseadas em distanciamento físico têm um forte potencial para reduzir a magnitude da epidemia da COVID-19 e levar a um número menor de casos. A redução e o achatamento do pico epidêmico é particularmente importante, pois isso reduz a pressão aguda nos serviços de saúde (Kiesha Prem et al., 2020).

  1. RECOMENDAÇÕES
    1. A melhor terapia para aqueles ainda não infectados, é a prevenção;
    2. Acatar a quarentena e a adesão as diversas medidas preventivas decretadas;
    3. Não usar outros anti-inflamatórios não esteróides (AINE), excepto o paracetamol;
    4. O uso de corticosteroides sistémicos não é recomendado.

 

1- https://www.hospimedica.com/covid-19/articles/294782352/clinical-trial-to-evaluate-drug-combination-of-gileads-remdesivir-and-eli-lillys-baricitinib-for-covid-19-treatment.html

 

 

  1. REFERÊNCIAS BIBLIOGRÁFICAS

Adams DM (2011) The role of the clinical ethics consultant in "unsettled" cases. J Clin Ethics 22:328-334; author reply 335-327.

Amann R and Peskar BA (2002) Anti-inflammatory effects of aspirin and sodium salicylate. Eur J Pharmacol 447:1-9.

Bayer R, Greco DB and Ramachandran R (2011) The ethics of clinical and epidemiological research. Int J Tuberc Lung Dis 15 Suppl 2:25-29.

Bertolini A, Ferrari A, Ottani A, Guerzoni S, Tacchi R and Leone S (2006) Paracetamol: new vistas of an old drug. CNS Drug Rev 12:250-275.

Caskey M, Klein F, Lorenzi JC, Seaman MS, West AP, Jr., Buckley N, Kremer G, Nogueira L, Braunschweig M, Scheid JF, Horwitz JA, Shimeliovich I, Ben-Avraham S, Witmer-Pack M, Platten M, Lehmann C, Burke LA, Hawthorne T, Gorelick RJ, Walker BD, Keler T, Gulick RM, Fatkenheuer G, Schlesinger SJ and Nussenzweig MC (2015) Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522:487-491.

Chung KC and Kotsis SV (2011) The ethics of clinical research. J Hand Surg Am 36:308-315.

Gao J, Tian Z and Yang X (2020) Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends 14:72-73.

Girard L and Vohra S (2011) Ethics of Using Herbal Medicine as Primary or Adjunct Treatment and Issues of Drug-Herb Interaction, in Herbal Medicine: Biomolecular and Clinical Aspects (nd, Benzie IFF and Wachtel-Galor S eds), Boca Raton (FL).

Group PIW, Multi-National PIIST, Davey RT, Jr., Dodd L, Proschan MA, Neaton J, Neuhaus Nordwall J, Koopmeiners JS, Beigel J, Tierney J, Lane HC, Fauci AS, Massaquoi MBF, Sahr F and Malvy D (2016) A Randomized, Controlled Trial of ZMapp for Ebola Virus Infection. N Engl J Med 375:1448-1456.

Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY and Yan Y (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res7:11.

Gupta P, Kamath AV, Park S, Chiu H, Lutman J, Maia M, Tan MW, Xu M, Swem L and Deng R (2016) Preclinical pharmacokinetics of MHAA4549A, a human monoclonal antibody to influenza A virus, and the prediction of its efficacious clinical dose for the treatment of patients hospitalized with influenza A. MAbs 8:991-997.

Jawhara S (2020) Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci 21.

Mandal J, Halder A and Parija SC (2011) Ethics and clinical research. Trop Parasitol 1:54-56.

Molewijk B, Slowther A and Aulisio M (2011) The practical importance of theory in clinical ethics support services. Bioethics 25:ii-iii.

Ottani A, Leone S, Sandrini M, Ferrari A and Bertolini A (2006) The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol 531:280-281.

Poirier S and Mayer G (2013) The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol. Drug Des Devel Ther 7:1135-1148.

Sanmukhani J and Tripathi CB (2011) Ethics in clinical research: the Indian perspective. Indian J Pharm Sci 73:125-130.

Schnipper LE, Davidson NE, Wollins DS, Tyne C, Blayney DW, Blum D, Dicker AP, Ganz PA, Hoverman JR, Langdon R, Lyman GH, Meropol NJ, Mulvey T, Newcomer L, Peppercorn J, Polite B, Raghavan D, Rossi G, Saltz L, Schrag D, Smith TJ, Yu PP, Hudis CA, Schilsky RL and American Society of Clinical O (2015) American Society of Clinical Oncology Statement: A Conceptual Framework to Assess the Value of Cancer Treatment Options. J Clin Oncol 33:2563-2577.

Shafiq N and Malhotra S (2011) Ethics in clinical research: need for assessing comprehension of informed consent form? Contemp Clin Trials 32:169-172.

World Medical A (2013) World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 310:2191-2194.

Xie L, Li J, Xie L and Bourne PE (2009) Drug discovery using chemical systems biology: identification of the protein-ligand binding network to explain the side effects of CETP inhibitors. PLoS Comput Biol 5:e1000387.

Xie L, Wang J and Bourne PE (2007) In silico elucidation of the molecular mechanism defining the adverse effect of selective estrogen receptor modulators. PLoS Comput Biol 3:e217.

 

 

ANEXOS

Resumo de alguns estudos feitos/em curso para o tratamento da  COVID-19

Classes

Opção Potencial de tratmento

Referências 

 

Anti - viral

 

Remdesivir, Ribavirin, Oseltamivir, ganciclovir, lopinavir/ritonavir,  

Lai CC, Shi TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020:105924. https://doi.org/10.1016/j.ijantimicag.2020.105924.

 

Library of Medicine (US). 2020 Mar 12 – Identifier NCT04303299, Various combination of Protease Inhibitors, Oseltamivir, Favipiravir, and Chloroquin for Treatment of COVID-19: A Randomized Control Trial (THDMS-COVID19)

 

 

 

 

 

Anti-maláricos

 

 

 

 

Fosfato de Cloroquina: se mostrou efectiva contra a  exacerbação da pneumonia devido as propriedades anti-virais e anti-inflamatórias

 

Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32074550. [cited 2020 Feb 22].

 

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe, et al. Hydroxychloroquine and azithromycin as a treatment of COVID‐19: results of an open‐label non‐randomized clinical trial. Int J Antimicrob Agents – In Press 17 March 2020. https://doi.org/10.1016/j.ijantimicag.2020.105949

 

Bethesda (MD): National Library of Medicine (US). 2020 Mar 12 – Identifier NCT04303507, Chloroquine Prevention of Coronavirus Disease (COVID-19) in the Healthcare Setting (COPCOV). Available from: https://clinicaltrials.gov/ct2/show/NCT04303507?term=NCT04303507&draw=2&rank=1

 

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 Mar 12 – Identifier NCT04261517. Efficacy and Safety of Hydroxychloroquine for Treatment of Pneumonia Caused by 2019-nCoV (HC-nCoV).

 Available from: https://clinicaltrials.gov/ct2/show/NCT04261517.

Tratamento fitoterápicos

Observou-se um amplo recurso à medicina tradicional chinesa durante o surto SARS-COV, e continua mem uso actualmente. As 5 plantas mais usadas sao:Radix (Huangqi), Glycyrrhizae Radix Et Rhizoma (Gancao), Saposhnikoviae Radix (Fangfeng), Atractylodis Macrocephalae Rhizoma (Baizhu), and Lonicerae Japonicae Flo.

Luo H, Tang Q-L, Shang Y-X, Liang S-B, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 2020; Available from: http://www.ncbi.nlm.nih.gov/pubmed/32065348.

Anti - viral

Darunavir +  cobicistat: o primeiro é usado para o tratamento da infeção por VIH e o segundo para aumentar a sua biodisponibilidade via inibição da CYP3A. Serão testados em pacientes com pneumonia por COVID-19 (estudo clínico número NCT04252274) 

 

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 Mar 12 – Identifier NCT04252274. Efficacy and Safety of Darunavir and Cobicistat for Treatment of Pneumonia Caused by 2019-nCoV (DACO-nCoV). Available from: https://clinicaltrials.gov/ct2/show/NCT04252274

Interferons

Recombinant human interferon  é conhecido pelos seus efeitos inibitórios sobre o  MERS-CoV e SARS-CoV, o propósito do estudo clínico é avaliação da eficácia deste interferm na nova infecção por coronavirus.

 

Haiyan Qiu; Junhua Wu; Liang Hong; Yunling Luo; Qifa Song; Dong Chen.Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. The Lancet Infectious Diseases, ISSN: 1473-3099, Vol: 0, Issue: 0, 2020;  Available online 25 March 2020 https://doi.org/10.1016/S1473-3099(20)30198-5

 

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 Mar 12 – Identifier NCT04293887, Efficacy and safety of IFN-a2b in the treatment of novel coronavirus patients. Available from: https://clinicaltrials.gov/ct2/show/NCT04293887?term=NCT04293887&draw=2&rank=1

 

Anti Oxidante não enzimático

Vitamina C tem actividade anti oxidante pelo que pode reduzir o estresse oxidativo e inflamação, efeitos que melhoram a actividades das células imunológicas, função endovascular e proporciona modificações imuno epigenéticas.

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 Mar 12 – Identifier NCT04264533, Vitamina C infusion for the treatment of severe 2019-nCoV infected pneu- monia. Available from:

https://clinicaltrials.gov/ct2/show/NCT04264533?term=NCT04264533&draw=2&rank=1

 

 

Imunoterápicos

Bevacizumab é um anticorpo monoclonal humanizado que tem como alvo o factor vascular de crescimento endothelial (VEGF),pode reduzir os niveis de VEGF causados pela  hipóxia, inflamação severa e hiper estimulação do epitélio do trato respiratório, podendo suprimeir o edema em pacientes com COVID-19

 

ClinicalTrials.gov [Internet]. Bethesda (MD): National Library of Medicine (US). 2020 Mar 12 – Identifier NCT04275414, Bevacizumab in severe or critical patients with Covid-19 pneumonia (BEST-CP). Available from:

https://clinicaltrials.gov/ct2/show/NCT04275414?term=NCT04275414&draw=2&rank=1

 

 

Imunoterapia

Administração de anticorpos IgG imunes coletados do plasma de pacientes recuperados contra o COVID-19. Estes aumentam a resposta imune em pacientes recém-infectados.

Jawhara, S. Could Intravenous Immunoglobulin Collected from Recovered Coronavirus Patients Protect against COVID-19 and Strengthen the Immune System of New Patients? Int. J. Mol. Sci. 202021, 2272. DOI:10.3390/ijms21072272

 

 

Sobrevivência do SARS-CoV-2 em Condições Variáveis de Temperatura e Humidade e a Ocorrência Sazonal da COVID-19

 

Ilustração dos coronavírus.1

 

Aires Walter Mavunge Carlos1, Orlis Loret de Mola2, Maurício Catau Miguel1

1 Faculdade de Medicina Veterinária, Universidade José Eduardo dos Santos, Huambo

2 Faculdade de Ciências Agrárias, Universidade José Eduardo dos Santos, Huambo

 

Introdução

Nas últimas duas décadas, o surgimento de epidemias virais representa grande ameaça à saúde humana e a sociedade, principalmente no continente Africano. Algumas destas infecções são conhecidas, tais como a febre hemorrágica de Marburg, a Febre Amarela e o Ebola.

A COVID-19 é causada pelo SARS-CoV-2 que pode evoluir para uma síndrome respiratória aguda grave (SARS). Os primeiros casos desta doença foram identificados na China, no passado 31 de dezembro de 2019, na cidade de Wuhan, província de Hubei (Huang et al., 2020; Zhou et al., 2020). Inicialmente tratou-se de um surto e com o transcorrer do tempo foi-se expandindo pelos diferentes continentes e declarado como pandemia pela OMS, aos 11 de Março de 2020.

O vírus SARS-CoV-2 pertence a família Coronaviridae e possui um genoma unimolecular com RNA de sentido positivo. Segundo estudos realizados pelo grupo de estudo dos coronavírus (CSG) do Comité Internacional de Taxonomia dos Vírus (ICTV), o SARS-CoV-2 é um vírus pertencente a ordem Nidovirales, subordem Comidovirineae, família Coronaviridae, subfamília Orthocoronavirinae, género Betacoronavírus, subgénero Sabecovirus (Gorbalenya et al., 2020).

No continente Africano os primeiros casos (importados) foram confirmados no Egipto, no dia 14 de fevereiro de 2020, e posteriormente foram registados em toda a sua extensão, inicialmente como casos importados, principalmente da Europa. Na África Subsaariana vários países foram considerados com risco moderado de importação de COVID-19, entre eles a Nigéria, a Etiópia, o Sudão, a Tanzânia, o Gana, o Quénia e Angola, devido ao pouco tráfego aéreo existente entre estes países e as cidades da China com circulação comunitária do vírus (Gilbert et al., 2020). No caso particular de Angola, os primeiros casos foram confirmados no dia 20 de Março do ano em curso, sendo casos importados do continente Europeu (Portugal).

Na actualidade, a COVID-19 é considerada uma emergência de saúde pública de interesse internacional, despertando grande interesse na comunidade científica. Vários trabalhos relacionados ao SARS-CoV-2 têm estado a decorrer, dentre os quais muitos deles ainda não publicados. Os poucos publicados sobre o assunto, abordam fundamentalmente aspectos sobre a virologia, origem, genômica, epidemiologia, manifestações clínicas, patologia e tratamento da infecção.

Este trabalho tem como objetivo fazer uma revisão da literatura cientifica disponível relacionada com a sobrevivência do SARS-CoV-2 em condições variáveis de temperatura e humidade e a sua ocorrência sazonal, proporcionando assim uma base para a compreensão sobre a sua dispersão pelo mundo e nos países afectados, em particular em Angola, podendo vir a contribuir para definir medidas e políticas de prevenção e combate à pandemia.

Para cumprir com o objetivo proposto, a presente revisão bibliográfica, busca dar resposta as seguintes questões:

  1. Que influência terão a temperatura e a humidade relativa na sobrevivência do SARS-CoV-2?
  2. Existe alguma relação entre as estações do ano e a sobrevivência do SARS-CoV-2?

Para responder estas questões, serão feitas duas abordagens: a primeira estará direccionada aos resultados das investigações realizadas e publicadas referentes ao efeito da temperatura e da humidade relativa em condições controladas (laboratório) e a segunda sobre as experiências naturais em diversas regiões geográficas.

 

Aspectos moleculares do SARS-CoV-2.

Cientistas chineses obtiveram a sequência genética do SARS-CoV-2, a partir do isolamento do vírus em pacientes infectados. Isto facilitou que os laboratórios de diferentes países pudessem produzir testes específicos de diagnóstico por PCR para detectar a nova infecção. Estes estudos revelaram que se trata de um Betacoronavirus (β CoV) do grupo 2B com pelo menos 70% de similaridade na sequência genética com o SARS-CoV (Lu et al., 2020).

Shereen et al. (2020) encontraram como resultado de estudos genômicos, que o SARS-CoV-2 representa uma nova espécie de Betacoronavírus zoonótico que está filogeneticamente relacionado com SARS-CoV e MERS-CoV.

Xie e Chen (2020), nas suas revisões sobre o SARS-CoV-2 afirmam que o genoma do mesmo se assemelha parcialmente ao SARS-CoV e MERS-CoV, indicando uma origem a partir do morcego. O SARS-COV-2 geralmente se propaga rapidamente, tendo um longo período de incubação, um curto intervalo serial e uma baixa taxa de mortalidade (muito maior em pacientes com riscos) quando comparado ao SARS-CoV e ao MERS-CoV. A apresentação clínica e patologia da COVID-19 assemelha-se muito mais com a SARS que com a MERS,

Wu et al. (2020), em investigação molecular revelam que o genoma do SARS-CoV-2 é idêntico em mais de 80% ao coronavírus humano anterior (CoV semelhante ao SARS), existindo apenas diferenças na ausência de proteína 8a e flutuação no número de aminoácidos na proteína 8b e 3c em relação ao SARS-CoV.

Romero, (2020), nas suas pesquisas sobre a caracterização bioinformática dos genomas do SARS-CoV-2, concluiu que existem actualmente depositados nas bases de dados (Ontologias) internacionais e de acesso aberto, como GISAID ou a base de dados de sequências genéticas GenBank, 3734 sequências de SARS-CoV-2 no GISAID e 446 no GenBank.

O estudo de ul Qamar et al., (2020) revelou que o 3CLpro conservado no SARS-CoV-2 é altamente semelhante ao 3CLpro no SARS-CoV, com algumas diferenças em relação a outros betacoronavírus. Apesar da semelhança geral significativa com a estrutura da 3CLpro do SARS-CoV, o local de ligação ao substrato 3CLpro do SARS-CoV-2 apresentou algumas diferenças importantes, o que destacou a necessidade da descoberta rápida de medicamentos para tratar da alarmante pandemia de COVID-19. Os compostos de plantas medicinais já são usados para tratar com sucesso inúmeras doenças virais. Aqui examina-se um banco de dados de plantas medicinais contendo 32.297 potenciais fitoquímicos antivirais e se selecionam os nove principais sucessos que podem inibir a actividade da 3CLpro do SARS-CoV-2 e a replicação do vírus, o que faz prever que as ideias obtidas do estudo possam ser valiosas para explorar e desenvolver novos agentes terapêuticos naturais anti-COVID-19 no futuro.

 

Estudos sobre o efeito da temperatura e da humidade na sobrevivência do SARS-CoV-2 em condições controladas

A literatura científica publicada até a presente data referente aos estudos realizados em condições controladas sobre a sobrevivência do SARS-CoV-2 em condições variáveis de temperaturas e humidade e a ocorrência sazonal em condições controladas (laboratório) é escassa. Não obstante, Chin et al., (2020), determinaram a estabilidade do SARS-CoV-2 em diferentes condições ambientais. A estirpe foi transportada mediante o sistema de transporte de vírus (VTM; concentração final: 6,8 logs TCID50 / ml), incubada por um período de 14 dias e, posteriormente, testada quanto à sua inactividade, a diferentes temperaturas. Observou-se que, de 3 a 4o C, houve apenas uma redução de ± 0,7 unidades logarítmicas no final de 14 dias de incubação; a 22oC, uma redução de 3 unidades logarítmica após 7 dias e nenhuma detecção aos 14 dias; a 37oC, uma redução de 3 unidades logarítmicas após 1 dia e nenhum vírus detectado posteriormente; a 70°C, o vírus se inactivou aos 5 minutos, concluindo-se que o vírus é altamente estável a 4°C, mas é sensível ao calor.

Van Doremalen et al., (2020), compararam a estabilidade entre estirpes de SARS-CoV-2 e SARS-CoV-1 em diferentes superfícies (plástico, aço inoxidável AISI 304, cobre [99,9%] e papelão) e em aerossóis a temperaturas de 21 e 23°C, e 65% humidade relativa (RH). Concluiram que, de uma forma geral, a estabilidade foi muito semelhante entre o SARS-CoV-2 e o SARS-CoV-1. Descobriram que os vírus viáveis podem ser detectados em aerossóis até 3 horas após a aerossolização, até 4 horas em cobre, até 24 horas em papelão e até 2 a 3 dias em plástico e aço inoxidável. O SARS-CoV-2 e o SARS-CoV-1 exibiram similar sobrevivência em aerossóis, com estimativas médias em torno de 2,7 horas. Ambos vírus mostraram viabilidade relativamente longa em aço inoxidável e polipropileno em comparação com o cobre ou papelão. A estimativa média de sobrevivência para o SARS-CoV-2 é de cerca de 13 horas em aço e 16 horas em polipropileno. Estes resultados indicam que a transmissão em aerossol e em objectos com SARS-CoV-2 é admissível, pois o vírus pode permanecer viável nos aerossóis por várias horas e em várias superfícies por até vários dias.

Até a presente data, os estudos disponíveis sobre temperatura e humidade relativa, relacionados com o SARS-CoV-2, são escassos. Não obstante, os resultados encontrados nos estudos sobre o SARS-CoV-2 são similares aos encontrados em outras espécies de Betacoronavirus como SARS-CoV (agente causal da síndrome respiratória aguda grave) e MERS-CoV (da síndrome respiratória do Oriente Médio), podendo servir de base na compreensão da vulnerabilidade do SARS-CoV-2 a certos factores ambientais como a temperatura ambiente e a humidade relativa, embora uma comparação entre os diferentes estudos experimentais deva ser muito cautelosa.

Neste sentido, Lowen et al., (2007), avaliaram os efeitos de vários níveis de temperatura e humidade relativa na propagação do vírus influenza em condições controladas (câmara ambiental), utilizando cobaias (porquinhos-da-índia). Descobriram que quando as cobaias foram mantidas a 5°C a transmissão ocorreu com maior frequência do que a 20°C, enquanto que, a 30°C não foi detectada nenhuma transmissão. No tocante a humidade relativa, encontraram que, valores entre 20% a 35% eram mais favoráveis para a transmissão do vírus, enquanto que a 80% a transmissão foi completamente bloqueada. Concluindo que as temperaturas frias e baixas humidades relativas, favorecem a propagação do vírus influenza.

Chan et al. (2011), estudando o efeito da temperatura e da humidade relativa em superfícies lisas na viabilidade do SARS-CoV, demostraram que em ambiente seco e superfícies lisas (ar condicionado) manteve a sua viabilidade por mais de 5 dias em temperaturas de 22 a 25°C e humidade relativa de 40 a 50%. No entanto, a viabilidade do vírus foi rapidamente perdida (> 3 log10) em temperaturas e humidade relativa mais altas (por exemplo, 38°C e humidade relativa de > 95%). O SARS-CoV revelou-se mais estável em ambiente de baixa temperatura e baixa humidade, sendo facilmente eliminado por aquecimento a 56°C por 15 minutos quando se encontra num meio liquido. Estes resultados demonstram o efeito sinérgico das altas temperaturas e da alta humidade relativa na inactivação e inviabilidade do SARS CoV.

Van Doremalen et al. (2013) realizaram trabalhos relacionados com a estabilidade do coronavírus da síndrome respiratória do Oriente Médio (MERS-CoV) e analisaram três níveis de temperatura (° C) e humidade relativa (%): (20°C e 40%); (30°C e 30%) e (30°C e 80%). Os resultados mostraram que o MERS-CoV foi mais estável a baixa temperatura e condições de baixa humidade, podendo ser recuperado após 48 horas o que sugere que este vírus, MERS-CoV, pode ser potencialmente transmitido por contacto ou fomentar a transmissão devido a sua presença prolongada no ambiente.

Otter et al. (2016), nas investigações realizadas com os coronavírus (SARS-CoV e MERS-CoV) e os vírus influenza (H1N1, H5N1 e H5N7), concluem que estes vírus podem sobreviver em superfícies por longos períodos, às vezes até meses e que SARS-CoV e o MERS-CoV podem ser lançados no meio ambiente e transferidos para as mãos de pacientes e profissionais de saúde podendo iniciar-se a auto-inoculação nas mucosas do nariz, olhos ou boca, pelo que as implicações de prevenção e controlo da infecção incluem a necessidade de higiene das mãos e protecção individual.

A relativa semelhança quanto a estabilidade ambiental e propagação que compartilham o SARS-CoV e o MERS-CoV com SARS-CoV-2, talvez esteja relacionada com a similaridade genética que indicam os estudos moleculares (genômica) (Kissler et al., 2020).

 

Sobrevivência e sazonalidade de ocorrência da COVID-19 em estudos de história natural em diversas regiões geográficas.

Sajadi et al., (2020), analisando o efeito da temperatura, humidade e latitude na prevenção, propagação e sazonalidade para o agente da COVID-19 examinaram dados climáticos de cidades com disseminação comunitária significativa do SARS-CoV-2, verificaram uma distribuição significativa de surtos na comunidade com estreita relação entre latitude, temperatura e humidade, apresentando um comportamento de um vírus respiratório sazonal. Além disto, os autores propuseram um modelo simplificado que mostra uma zona de maior risco quanto a velocidade de propagação do SARS-CoV-2. Usando a modelagem climática, pode ser possível prever as regiões com maior risco de disseminação significativa do SARS-CoV-2 na comunidade, permitindo a concentração de esforços para mitigar os impactos negativos.

Notari, (2020) analisou a taxa de transmissão do COVID-19 em função da temperatura. O estudo foi realizado em diferentes países. No estágio inicial foram utilizados dados de (42 países ) e posteriormente estendeu- se para  (88 países) que desenvolveram a epidemia mais recentemente. O ponto de partida foi de 30 casos em cada pais, analisando a evolução da transmissão durante 12 dias consecutivos. Observou um crescimento exponencial homogêneo entre os países analisados. A relação entre a taxa α e a temperatura média (T) de cada país no mês do crescimento da epidemia, evidenciou para todos os países uma diminuição da taxa de crescimento em função de T, para um limite de confiança (C.L) de 99,66% nos países de estágio inicial e de 99,86% nos que desenvolveram a epidemia mais recente e, o pico de transmissão foi de cerca (7,7 ± 3,6°C). Estes resultados sugerem que para os países do hemisfério norte, a taxa de transmissão deve diminuir significativamente no verão (altas temperaturas) podendo interromper completamente a propagação do vírus antes da chegada do próximo inverno (baixas temperaturas).

Wang et al. (2020) investigaram a influência da temperatura ambiente e da humidade relativa do ar na transmissão do SARS-CoV-2 em 100 cidades chinesas com mais de 40 casos. Estes concluíram que a alta temperatura e a alta humidade relativa reduzem significativamente a transmissão do SARS-CoV-2, o aumento de 1°C na temperatura e aumento de 1% na humidade relativa diminui o número reprodutivo diário eficaz (R) em 0,0225 e 0,0158, respectivamente. Os mesmos, consideram os resultados consistentes pelo facto de que a alta temperatura e a alta humidade reduzem a transmissão do vírus da influenza. Estes dados indicam que a chegada do verão e da estação chuvosa no hemisfério norte podem efectivamente reduzir a transmissão do SARS-CoV-2 , explorando como a variação sazonal pode modular na transmissibilidade da pandemia da COVID-19.

Poole et al. (2020) encontraram uma correlação entre a propagação do SARS-CoV-2, com as temperaturas e latitude climatológicas. O estudo se realizou ao longo de uma área observada de 25-55° de latitude norte e dentro de uma faixa climatológica de 4-12°C, observando-se uma rápida disseminação da doença entre dezembro e fevereiro de 2019-2020. Embora exista correlação entre os perfis de temperatura e a disseminação da doença, podem existir em paralelo outros elementos causais associados à cinética viral do SARS-CoV-2, já que os dados da pesquisa confirmam que o vírus não se inactivou  rapidamente em faixas de temperatura fora do perfil térmico ambiental óptimo observado neste estudo (4-12 °C). É possível que isto esteja relacionado com outro factor como a radiação atmosférica, podendo ser outro factor importante na aparente variação sazonal da COVID-19.

Roy, (2020), em um artigo sobre a influência do clima na propagação e vulnerabilidade do SARS-CoV-2, destaca que a temperatura e a humidade são importantes na transmissão do vírus, sendo a temperatura o factor mais influente, referindo que um ambiente seco e fresco é o estado mais favorável para a propagação do vírus e um ambiente de alta temperatura reduz significativamente o risco do vírus e que provavelmente, lugares e países quentes sejam menos vulneráveis. Os resultados fornecem as primeiras estimativas causais plausíveis da relação entre a transmissão do SARS-CoV-2 e a temperatura local, a partir de uma amostra global composta por 166.686 novos casos confirmados de COVID-19 de 134 países, de 22 de janeiro a 15 de março de 2020. Nestes estudos, encontraram-se evidências estatísticas que indicam que um aumento de 1°C na temperatura local reduz a transmissão em 13%. Por outro lado, não encontraram influência da humidade ou precipitação específica na transmissão da COVID-19.

Carleton et al., (2020), fazendo estimativas empíricas causais sugerem que as taxas de transmissão do SARS-CoV-2 são altamente sazonais. Por outro lado, os autores simularam temperaturas sazonais e projectaram que as mudanças de temperatura entre março de 2020 e julho de 2020 farão com que a transmissão do SARS-CoV-2 caia 43% em média nos países do hemisfério norte e aumentem 71% em média nos países do hemisfério sul. As referidas projecções, invertem-se à medida que o inverno se aproxima, com as temperaturas sazonais em janeiro de 2021 aumentando a transmissão média do SARS-CoV-2 em 59% em relação a março de 2020 nos países do Norte e diminuindo a transmissão em 2% nos países do sul. Os resultados sugerem que os países do hemisfério sul devem esperar maior transmissão nos próximos meses.

Ma et al. (2020) estudaram a relação entre o número de óbitos por COVID-19 e os parâmetros climáticos. Recolheram dados sobre os números de óbitos diários de COVID-19, parâmetros meteorológicos e dados de poluentes ambientais de 20 de janeiro de 2020 a 29 de fevereiro de 2020 em Wuhan, China. Aplicaram um modelo aditivo generalizado para explorar o efeito da temperatura, humidade e temperatura diurna nas contagens diárias de óbitos de COVID-19. Houve 2299 contagens de óbitos por COVID-19 em Wuhan durante o período do estudo. Observando uma relação positiva com a contagem diária de óbitos de COVID-19 para a faixa de temperatura diurna (r = 0,44) e uma relação negativa para a humidade relativa (r = -0,32). Além disso, um aumento unitário na faixa de temperatura diurna foi associado apenas a um aumento de 2,92% nas mortes por COVID-19. No entanto, tanto o aumento de 1 unidade de temperatura e da humidade relativa foram relacionados a diminuição de mortes por COVID-19, sugerindo que a variação da temperatura e a humidade também podem ser factores importantes que afectam a mortalidade por COVID-19.

 

O clima em Angola (temperatura e humidade relativa)

Angola situa-se na parte ocidental da África Austral, o clima é caracterizado por ser tropical na região norte e subtropical na região sul, com temperaturas médias a rondar os 27°C de máxima e 17°C de mínima (Figura 1). Existem duas estações: a época chuvosa (com altas temperaturas e alta humidade relativa), que ocorre entre os meses de setembro a maio, e a época seca (com baixas temperaturas e baixa humidade relativa) que ocorre nos meses de maio a setembro (ENAC, 2017).

(A) (B)

 

Figura 1. Diagramas climáticos de Angola. Representado pela letra (A) as temperaturas (°C) e pela letra (B) a humidade relativa (%)2.

 

Como se pode observar na figura 1, em relação às temperaturas,  aproxima-se a época fria e seca, caracterizada por factores climáticos considerados por vários estudos como favoráveis para propagação do COVID-19.  

 

Conclusões

Actualmente existem muitas investigações a decorrer e esta revisão proporciona uma base para a melhor compreensão dos mecanismos de dispersão e transmissão do SARS-CoV-2 pelo mundo e sobretudo em Angola onde a variabilidade climática poderia ser um factor de risco.

A análise da informação existente sobre a sobrevivência e sazonalidade da ocorrência da COVID-19, demonstra evidências de associação entre esta doença e os factores meteorológicos, tais como as baixas temperaturas e a humidade relativa. Não obstante, estes factores não estão isolados podendo coexistir com outros na sobrevivência do SARS-COV-2.

Cabe destacar que apesar das evidências experimentais tanto a nível laboratorial como da história natural, não podemos ignorar as possíveis fontes de erro associados a este tipo de investigações tais como o tempo de observação (dias), a similaridade entre as condições reais de temperatura e humidade com as utilizadas no laboratório, o número reduzido de países analisados e estando a maioria localizados no hemisfério norte e sob as mesmas condições ambientais (inverno) e o número reduzido de réplicas dos experimentos para chegar a uma conclusão definitiva.

Por outro lado, é um tanto contraditório o facto de que em países como o Equador e outros países centro-americanos, ou mesmo a Singapura, cujas temperaturas rondam os 30°C, reportadas como letais para este vírus, a pandemia também se alastrou com muita rapidez.

 

1- https://duux.com/en/the-effects-of-temperature-and-humidity-on-covid-19-corona-virus/

2- https://www.datosmundial.com/africa/angola/clima.php

 

 

Bibliografia   

Chan, K. H.; Malik Peiris,  J. S.; Lam, S. Y.; Poon L. L. M.; Yuen K. Y.;  Seto, W. H. (2011). The Effects of Temperature and Relative Humidity on the Viability of the SARS Coronavirus.   Journal Advances in Virology. Volume 2011, Article ID 734690, Pag 1-7.  Doi:10.1155/2011/734690.

 Carleton, T., & Meng, K. C. (2020). Causal empirical estimates suggest COVID-19 transmission rates are highly seasonal. Doi: https://doi.org/10.1101/2020.03.26.20044420

Chin, A.W.H.;  Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.L.; Chan, M.C.W.; Peiris, M.;  Poon,  L. L.M. (2020). Stability of SARS-CoV-2 in different environmental conditions medRxiv preprint Doi: https://doi.org/10.1101/2020.03.15.20036673.

ENAC, (2017). Estratégia Nacional para as alterações climáticas 2018-2030. Ministério do Ambiente. República de Angola.

Gilbert, M.; Pullano, G.; Pinotti, F.; Valdano, E.; Poletto, C.; Boëlle, P; D'Ortenzio, E.; Yazdanpanah, Y.; Eholie, S.P.; Altmann, M.; Gutierrez, B.; Kraemer, M. U.G.; Colizza,V. (2020). Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study. The Lancet. Volume 395, Issue 10227, 14–20 March 2020, Pag 871-877. Science Direct.

Gorbalenya, A.E.; Baker, S.C.; Baric, R.S. et al. (2020).   The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol https://doi.org/10.1038/s41564-020-0695-z.

Huang, C.; Wang, Y.;  Li, X.;  Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.;  Xu, J.; Gu, X.;  et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. https://doi.org/10.1016/s0140-6736(20)30183-5.

Lowen, A. C., Mubareka, S., Steel, J. & Palese, P., 2007. Influenza Virus Transmission Is Dependent. PLoS Pathog, 3(10), p. 151.

Lu, R.; Zhao, X.;  Li, J.;  Niu,  P.;  Yang, B.; Wu, H. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. Doi: 10.1016/S0140-6736(20)30251-8.

Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. (2020). Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China. Volume 724, 1 July, 138-226. Elsevier. https://doi.org/10.1016/j.scitotenv.2020.138226

Notari, A. (2020) ‘Temperature dependence of COVID-19 transmission. medRxiv preprint Doi: https://doi.org/10.1101/2020.03.26.20044529.

Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. (2016). Transmission of SARS and MERS coronaviruses and influenza virus in healthcare settings: the possible role of dry surface contamination. Journal of Hospital Infection. Volume 92, Issue 3, Pag 235-250. Elsevier. https://doi.org/10.1016/j.jhin.2015.08.027.

Poole, L. (2020). Seasonal Influences On The Spread Of SARS-CoV-2 (COVID19), Causality, and Forecastabililty. Available at SSRN: https://ssrn.com/abstract=3554746 or http://dx.doi.org/10.2139/ssrn.3554746.

Romero, P.E.  (2020). Escasa información genómica en bases de datos públicas para investigar el SARS-COV-2 en Latinoamérica. Rev Peru Med.Exp en : 37.

Roy, I. (2020). Atmospheric Variables and Additional Urgent Solutions for Combating COVID-19. doi:0.20944/preprints202003.0366.v2

Sajadi, M.M.; Habibzadeh, P.; Vintzileos, A.; Shokouhi, S.; Miralles-Wilhelm, F.; Amoroso, A. (2020).  Temperature, Humidity and Latitude Analysis to Predict Potential Spread and Seasonality for COVID-19. Related Journals. SSRN. Doi https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3550308

Shereen, M. A.; Khana, S.; Kazmi, A.; Bashira, N.; Siddiquea, R. (2020). COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. Volume 24, July 2020, Pages 91-98.

Kissler, M. S.; Tedijanto, C.; Goldstein, E.M.; Grad, Y.H.;  Lipsitch, M. (2020). Projecting the transmission dynamics of SARS-CoV-2 through the post-pandemic period.  medRxiv preprint Doi: https://doi.org/10.1101/2020.03.04.20031112  

Ul Qamar, M.T.; Alqahtani, S.M.; Alamri, M. A.; Chen, L.L. (2020). Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. Journal Pre-proof. PII: S2095-1779(20)30127-1. Reference: JPHA 533. Doi: https://doi.org/10.1016/j.jpha.2020.03.009.  

Van Doremalen, N.; Bushmaker,  T.; Munster, V. J.(2013),  Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill.;18(38):pii=20590. online: http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20590.

Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble A.; Williamson, B.N.; Tamin, N.; Harcourt, J.L.;  Thornburg, N.J.; Gerber, S.I; Lloyd-Smith, J.O.; de Wit, E.  Munster, V.J. (2020).  Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1. medRxiv preprint Doi: https://doi.org/10.1101/2020.03.09.20033217.

Wang, J.; Tang, K.; Feng, K.; Lv, W. (2020). High Temperature and High Humidity Reduce the Transmission of COVID-19. Available at SSRN: https://ssrn.com/abstract=3551767 or http://dx.doi.org/10.2139/ssrn.3551767

Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China Cell Host Microbe

Xie, M. e Chen, Q. (2020).  Insight into 2019 novel coronavirus — an updated intrim review and lessons from SARS-CoV and MERS-CoV. Journal Pre-proof. PII: S1201-9712 (20) 30204-6 Doi: https://doi.org/10.1016/j.ijid.2020.03.071. Reference: IJID 4077.

Zhou, P.; Yang, X.-L.; Wang, X.-G.;  Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.;  Zhu, Y.; Li, B.; Huang, C.L.; et al. (2020). Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. https://doi.org/10.1101/2020.01.22.914952.

Romero, P.E.  (2020). Escasa información genómica en bases de datos públicas para investigar el SARS-COV-2 en Latinoamérica. Rev Peru Med.Exp en : 37.

  

Epidemiologia e Fisiopatologia

Ciclo de replicação do SARS-Cov-21 

 

Pedro Magalhães1, Daniel Pires Capingana2, Ema Cândido Branco Fernandes3, José Belchior da Silva3 e Manuel João de Lemos3

 1Departamento de Ciências Fisiológicas da Faculdade de Medicina da Universidade Agostinho Neto

2Instituto Superior de Ciências de Saúde da Universidade Cuito Cuanavale

3Departamento de Saúde Pública da Faculdade de Medicina da Universidade Agostinho Neto

 

Incidência e distribuição geográfica

A República da China informou a Organização Mundial da Saúde (OMS), a 31 de Dezembro de 2019, a existência de casos de pneumonia cuja etiologia era desconhecida. Estes casos foram identificados na cidade de Wuhan, província de Hubei. Até ao dia 03 de Janeiro de 2020 foram notificados 44 casos, mas somente a 07 de Janeiro foi identificado, na China, como agente etiológico um novo tipo de coronavírus que veio a receber a designação de SARS-CoV-2, com a posterior identificação da sua sequência genética alguns dias depois (WHO, 2020 b).

A Tailândia, o Japão e a República da Coreia foram os primeiros países a reportarem casos positivos importados da cidade de Wuhan. Dos 282 casos positivos reportados a 20 de Janeiro de 2020, 98,6% eram da China e, destes, 7,2% eram externos à província de Hubei (WHO, 2020b).  

Cinco dias depois (25 de Janeiro), o total de casos novos no Mundo era de 1030, com o epicentro na China, com 1219 casos novos confirmados e 1965 casos suspeitos; mais nove países tinham casos positivos, todos importados da China. Os países afectados fora da Ásia eram a Austrália, os Estados Unidos da América e a França (WHO, 2020f). 

A 11 de Março a OMS declara a doença provocada pelo SARS-CoV-2 (COVID-19) como pandemia, numa altura em que havia cerca de 118.000 casos em 114 países e 4.291 óbitos com milhares de pessoas lutando pela vida em hospitais (WHO, 2020g).

Embora os números mudem constantemente, de acordo com o relatório da OMS, no dia 18 de Abril, existiam no mundo 2.078.605 casos confirmados (77.846 novos casos) e 139.515 óbitos verificados no conjunto de 213 países e territórios, sendo que mais de metade dos casos foi reportada na região Europeia, seguindo-se a região das Américas, onde predominavam os Estados Unidos da América com 632.781 casos (WHO, 2020 h). Deste modo, estima-se um número de 288,1 casos por um milhão de habitantes no mundo. Até ao dia 18 de Abril, em Angola estavam registados 19 casos (correspondente a 0,61 casos por um milhão de habitantes), todos importados e localizados na província de Luanda. Registaram-se cinco altas, com melhoria, e dois óbitos. Os casos que evoluíram para óbito referem-se a pacientes que deram entrada com co-morbidades crónicas.

 

Transmissibilidade e medidas de mitigação

Os pacientes infectados pelo coronavírus (sintomáticos ou assintomáticos) são a principal fonte de infecção. A transmissão de pessoa a pessoa pode ocorrer de modo directo, através de gotículas respiratórias (tossir, espirrar e falar), que é muito frequente em ambiente familiar e hospitalar. A transmissão indirecta pode ocorrer por contacto das mãos com superfícies secas ou objectos contaminados, sendo os vírus introduzidos no organismo por auto-inoculação através das mucosas dos olhos, nariz ou boca. Contudo, também tem sido sugerida a possibilidade de transmissão fecal-oral (Jawetz Melnick, & Adelberg’s, 2016, p.4-5).

Para a COVID-19, a transmissão ocorre com uma rápida propagação, o que constitui um grande desafio para o seu controlo. Com base no padrão de propagação desta doença observado na população Chinesa, foram efectuados estudos para tentar demonstrar a transmissibilidade e prever a sua disseminação. Para tal, e usando um modelo matemático, estimou-se o índice de reprodução (R0), partindo de um caso índice que corresponde ao número médio de pessoas que um indivíduo infectado irá transmitir a doença. Nos casos em que o R0 é maior do que 1 significa que a doença irá manter a transmissibilidade. Para a COVID-19 a média do R0 é de 2,2 a 2,3 com um período de duplicação de casos de 6,4 dias, (Baker et al., 2020; Li et al., 2020), isso significa que existe a probabilidade de um indivíduo infectado transmitir a doença a 2,3 a 2,6 pessoas e com possível duplicação desse número num intervalo de 6,4 dias. Com esta constatação previu-se que a disseminação da doença seria muito rápida (R0 <1), sendo pertinente a adopção de medidas de mitigação (Prompetchara et al., 2020). 

Simulações ilustrativas de um modelo de transmissão do COVID-192

Novas evidências sobre a transmissão da COVID-19 têm sido reportadas, referindo que a mesma pode ocorrer em indivíduos sintomáticos, pré-sintomáticos e assintomáticos (WHO, 2020 d), uma vez que não foi observada uma diferença de carga viral entre os mesmos (Zou et al 2020).

A transmissão ocorre principalmente a partir de indivíduos sintomáticos: pelo contacto próximo através de gotículas respiratórias – tosse e espirro; por contacto directo – abraço, beijo, aperto de mãos; por contacto com objectos e superfícies contaminadas. Existe a evidência laboratorial de que a concentração do vírus é elevada nas vias respiratórias altas – nariz e garganta – nos três primeiros dias após o início dos sintomas. Estes resultados sugerem que a transmissão da doença seja maior no início, diminuindo ao longo da sua evolução.

O período de incubação médio é de cinco a seis dias podendo ir até 14. O indivíduo pode ser positivo laboratorialmente um a três dias antes de desenvolver os sintomas, podendo transmitir a doença neste período. Existem alguns relatos de casos confirmados em laboratório que se mantiveram assintomáticos. Apesar de, até ao momento, não ter havido evidência de transmissão a partir desses casos, deve-se considerar a possibilidade de que possa ocorrer.

Os dados de estudos sobre a COVD-19 na China indicam que a exposição desprotegida e os contactos próximos permitiram a disseminação rápida da doença entre as pessoas. Por exemplo, mais de 85% da transmissão pessoa a pessoa ocorreu em ambiente familiar, incluindo entre os funcionários de saúde infectados fora do ambiente hospitalar (WHO, 2020 a; Wu Z and McGoogan, 2020). O mesmo padrão de transmissão foi observado fora da China, revelando que a transmissão ocorria em contactos próximos entre pessoas que frequentavam o mesmo ambiente social ou as mesmas áreas circunscritas, tais como os escritórios ou navios cruzeiros (National Institute of Infectious Diseases, 2020; Rothe et al., 2020).

Uma particularidade do coronavírus é a sua grande capacidade de mutação. Contudo, o modo de transmissão da infecção do agente mantém-se ao longo dos tempos. Olhando para os antecedentes, o surto da síndrome respiratória aguda grave (SARS) que ocorreu em finais de 2002, no Sul da China, resultou em mais de 8000 casos em 29 países, com mais de 800 mortes (taxa de mortalidade de 9,6%) e só diminuiu em meados de 2003. Esse surto tinha sido causado por um coronavírus que tinha sofrido uma mutação e por isso foi chamado CoV-1. Em quase todos os casos que ocorreram também havia um histórico de contacto próximo com um paciente de SARS ou de viagens recentes para uma área onde esta tinha sido relatada (Lee et al., 2003). Nessa altura, as viagens aéreas internacionais permitiram que a SARS se espalhasse pelo mundo a uma velocidade sem precedentes. Esse mesmo padrão verifica-se hoje na pandemia da COVID-19, causada pelo novo coronavírus (SARS-CoV-2), cujos primeiros casos surgiram em uma província Chinesa em finais de 2019 e continua a causar milhares de mortes em todos os continentes a um ritmo assustador nos dias de hoje (WHO, 2020 b; WHO, 2020 c).

Portanto, essa experiência com a SARS ilustra bem que, em um mundo globalizado, um surto de doença infecciosa em qualquer lugar põe em risco toda população do mundo, sem excepção. Daqui depreende-se a importância da identificação precoce de pessoas que tiveram contacto com os casos (suspeitos), o isolamento dos casos, o cumprimento do distanciamento físico entre as pessoas (pelo menos 1 metro) que deve ser observado mesmo entre as pessoas aparentemente sãs. Os dados de um estudo recente sobre a COVID-19 realizado em Wuhan, China, sugerem que o início tardio ou o relaxamento das medidas de distanciamento físico entre as pessoas em diferentes ambientes estavam na base do ressurgimento de casos de infecção na comunidade (Prem et al., 2020).  

Importa ressaltar que, em algumas situações, os coronavírus sofrem mutações e multiplicam-se rapidamente dentro do organismo do paciente. Como consequência, esses pacientes tornam-se em “super-propagadores” da infecção, sendo capazes de transmiti-la para um elevado número de pessoas com que estes entrarem em contacto (Jawetz Melnick, & Adelberg’s, 2016, p.4).

 

Medidas de mitigação da infecção

A actual de mitigação da COVID-19 deve estar direccionada à comunidade, para atrasar-se a propagação exponencial dos casos, e deve incluir (Ebrahim et al 2020; Qualls et al 2020;WHO, 2020e; Pandey et al 2014; Markel et  al 2014):

  1. O cancelamento de eventos com elevado número de aglomerado populacional: a restrição de eventos como festivais de música, encontros religiosos, desportivos, culturais, conferências e eventos políticos aumentam a probabilidade de transmissão mesmo em situações em que o R0 é baixo.
  2. O distanciamento social contribui para a redução da frequência e duração do contacto de pessoas em todas as idades. O encerramento de escolas e universidades, igrejas, locais de entretenimento e outros espaços é fundamental para a diminuição de aglomerados populacionais. Estudos referem que a concentração populacional em escolas é de 3-4 m2/criança comparado com o de escritórios de serviço que é de 18 m2/pessoa. Apesar disso deve-se diminuir a densidade de trabalhadores com a adopção de novos horários de trabalho e a rotação por turnos para minimizar a transmissão da doença.
  3. As viagens constituem um dos factores de disseminação da doença. Contribuem para a importação de casos e a disseminação no país. A restrição de viagens internacionais constitui uma das medidas que os governos devem adoptar sem prejuízo dos serviços essenciais.
  4. A quarentena institucional é pouco prática quando a epidemia está instalada devido a sobrecarga dos serviços e os gastos adicionais. A quarentena domiciliar voluntária é a melhor opção em situações em que a concentração populacional intra-domiciliar o permitam. Outro aspecto de extrema importância é o grau de responsabilidade dos indivíduos, para manterem-se em casa durante o período de quarentena.
  5. Directrizes para as alterações dos serviços funerários são de extrema importância. Em países como o nosso os funerais são conduzidos em casa, com grande concentração de familiares e amigos e muitas vezes com a manipulação dos corpos.
  6. Comunicação clara do aumento da propagação da doença às autoridades nacionais e internacionais de saúde são fundamentais para preservar a calma e uma resposta compatível aos conselhos de mitigação entre o público.

Para todas essas acções de mitigação, o momento em que as mesmas são adoptadas são fundamentais para o controlo da epidemia. Cada país deve calcular o risco e aplicar cada uma destas medidas atempadamente.

Associadas a estas medidas devem-se manter todos os passos de vigilância epidemiológica e as medidas individuais de protecção.

 

Período de infecciosidade

A doença COVID-19 é altamente contagiosa. Tendo em conta a amplitude do período de incubação (um a 14 dias), o perigo de infecção está presente desde que o indivíduo tenha o contacto com a fonte de infecção (humana ou objectos). Deste modo, a doença pode ser transmitida inclusive pelos portadores assintomáticos (directa ou indirectamente), mesmo durante o período de incubação, indicando a necessidade de se fazer uma busca activa dos contactos assim como de todos os indivíduos não suspeitos, pois existe o risco de propagação da infecção em massa.

 

Imunidade

Geralmente o organismo produz anticorpos (imunoglobulina G, IgG) protectores contra a presença dos coronavírus por volta da segunda semana ou muito depois. Essa protecção pode persistir por várias semanas até anos e pode proporcionar a protecção contra a reinfecção pelo mesmo vírus (Jawetz Melnick, & Adelberg’s, 2016, p.5). No caso da infecção pelo SARS-CoV-2, os dados científicos sobre o nível e duração da imunidade proporcionada por anticorpos contra o vírus da COVID-19 são escassos. O facto de que muitos pacientes se recuperarem da infecção por COVID-19 sem manifestar os sintomas da doença sugere uma possível resposta, e tudo isso exige uma regulação precisa para eliminar-se os vírus sem causar doença imunológica.

Foi observado que os pacientes afectados por COVID-19 apresentam relativa elevação de algumas citocinas e quimiocinas plasmáticas, incluindo interleucinas (IL): IL-1, IL-2, IL-4, IL-7, IL-10, IL-12, IL-13, IL-17, factor estimulador de crescimento celular (GCSF), factor estimulador de colónias de macrófagos (MCSF), IP-10, MCP-1, MIP-1α, factor de crescimento de hepatócitos (HGF), IFN-γ e TNF-α (Huang et al 2020; Chen et al 2020; Liu et al 2020). Pensa-se que em pacientes admitidos nos cuidados intensivos em estado crítico, a elevação das citocinas pró-inflamtórias seja responsável pela gravidade da doença e incluem as IL2, IL7, IL10, os GCSF, IP10, MCP1, MIP1α e o TNFα (Huang et al 2020). Contudo estão em curso estudos em vários países, para testar se os pacientes que se recuperaram da COVID-19 desenvolveram anticorpos imunizadores (Jawara, 2020).

 

Mecanismos fisiopatológicos da infecção

A informação existente sobre os coronavírus tem revelado que eles têm uma grande afinidade às células epiteliais do tracto respiratório onde causam alterações que levam ao surgimento de doença respiratória que pode ser severa.

O vírus liga-se ao receptor da célula do epitélio alveolar (principalmente nos pneumócitos tipo II) através da sua glicoproteína de membrana S que se encontra no envoltório da “coroa”. Uma vez dentro da célula infectada, o vírus inicia o processo de replicação do seu RNA para sintetizar um conjunto de proteínas incluindo os factores inflamatórios que desencadeiam as alterações fisiopatológicas que levam ao surgimento das manifestações de doença respiratória (Jawetz Melnick, & Adelberg’s, 2016, p.4-5).

Foi descrita que, no caso do vírus SARS-CoV, este liga-se a enzima conversora da angiotensina 2 (ECA2) que serve como receptor celular e regula a transmissão de espécies cruzadas e de pessoa para pessoa (Jia et et al., 2020; Wan et al., 2020). O SARS-CoV-2 também usa o mesmo receptor de entrada celular descrito para o SARS-CoV (Zhou et al., 2020). Entretanto, os estudos recentes têm mostrado que o SARS-CoV-2 tem uma afinidade aos receptores ECA2 que é 10 a 20 vezes maior do que a do SARS-CoV o que o torna muito mais virulento (Hoffmann et al., 2020; Wrapp et al., 2020). Como consequência, pode não ser necessária uma grande quantidade de vírus para causar uma infecção nos pacientes.Deste modo, a glicoproteína S que se encontra na superfície do coronavírus liga-se ao receptor ECA2 que se encontra na superfície das células humanas (Guo et al., 2020). A ECA2 é encontrada na maioria dos tecidos e amplamente distribuída no coração, rins, pulmões e testículos (Donoghue et al., 2000; Ohtsuki et al., 2010). Contudo, os mecanismos moleculares mais detalhados de ligação viral e modos de entrada continuam ainda em estudo (Guo et al., 2020).  

Representação esquemática da progressão da COVID-193

Após a fusão da membrana, o RNA do genoma viral é liberado no citoplasma e o RNA não revestido traduz duas poliproteínas, pp1a e pp1ab, que codificam proteínas não estruturais e formam o complexo de replicação e transcrição (Sawicki & Sawicki, 2005; Wilde et al., 2018;). Essas poliproteinas específicas são utilizadas também para a síntese do nuleopcapside do vírus, proteinas da glicoproteina S e enzimas específicas, em presença de proteases específicas sintetizadas nos ribossomos das células do epitélio alveolar. O vírus pode causar a lise dos pneumócitos e estes libertam várias substâncias incluindo os factores activadores dos macrófagos.

Os macrófagos activados acabam por produzir as citocinas e quimiocinas pro-inflamatórias, principalmente as IL1, IL6 e o TNF-α que, dentre outros efeitos, aumentam a permeabilidade capilar e causam a vasodilatação que pode levar ao surgimento de edema pulmonar em casos graves. A combinação da lise dos pneumócitos II (produtores de surfactante) associada ao edema interstcial e alveolar, juntos, leva à hipoxémia e consequente manifestação sob a forma de tosse e dispneia grave. A disseminação de citocinas na corrente sanguínea atinge vários órgãos incluindo o centro termorregulador no hipotálamo em que as IL1, IL6 e o TNF-α levam ao surgimento da febre mediada por prostaglandinas (E2). Uma vez instalada, a hipoxémia pode levar a estimulação dos quimiorreceptores que activam o sistema nervoso simpático causando o aumento reflexo da frequência cardíaca.

Por outro lado, tem sido sugerido que infecção por SARS-CoV-2 pode diminuir a ECA2, levando a uma superacumulação tóxica da angiotensina II que induz a síndrome do desconforto respiratório agudo e miocardite fulminante (Hanff et al., 2020). Por outro lado, a presença do vírus da COVID-19 está associada a uma elevada resposta inflamatória que pode induzir a inflamação vascular, miocardite e arritmias cardíacas. A carga inflamatória provavelmente induz a resposta imune localizada e sistêmica (Madjid et al., 2020). Alguns casos apresentam altos níveis de citocinas pró-inflamatórias que promovem a gravidade da doença (Huang et al., 2020). Duma maneira global, a presença níveis sistémicos de citocinas pró-inflamtórias em ambiente de hipoxemia pode levar a um quadro de septicemia.

No entanto, a angiotensina II também pode promover a ocorrência de edema pulmonar e comprometimento da função pulmonar. A síndrome do desconforto respiratório agudo é a forma mais grave de lesão pulmonar e, se caracteriza principalmente pelo aumento da permeabilidade vascular provavelmente induzida por sépsis (Imai et al., 2005). Na sua maioria os pacientes desenvolvem a pneumonia, mas alguns podem evoluir com uma disfunção de outros órgãos, levando ao choque, disfunção múltipla de órgãos e eventualmente a morte.

 

1- https://www.fpm.org.uk/blog/covid-19-sars-cov-2-pandemic/

2- https://www.thelancet.com/pdfs/journals/lancet/PIIS0140-6736(20)30567-5.pdf

3- https://www.nature.com/articles/s41418-020-0530-3

 

Referências bibliográficas

Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020; 25.

Bassetti M, Vena A, Giacobbe DR.The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm.Eur J Clin Invest. 2020; 50:e13209. doi. org/10.1111/ec.

Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua Shaoshang Zazhi. 2020;36(0): E005.

Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research 2000; 87: E1-E9.

Ebrahim SH, Ahmed QA, Gozzer E, et al. Covid-19 and community mitigation strategies in a pandemic. BMJ 2020; 368:m1066 doi: 10.1136/bmj.m1066.

Guo Y,  Cao Q, Hong Z, Tan Y, Chen S, Jin H, Tan K, Wang D, Yan Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. BMC. 2020; 7:11. doi.org/10.1186/s40779-020-00240-0.

Hanff TC, Harhay MO, Brown TS, Cohen JB, Mohareb AM. Is There an Association Between COVID-19 Mortality and the Renin-Angiotensin System—a Call for Epidemiologic Investigations. Clinical Infectious Diseases, 26 March 2020. doi.org/10.1093/cid/ciaa329.

Hoffmann M, Kleine-Weber H, Schroeder S., et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is Blocked by a clinically proven protease inhibitor, Cell 2020 (181): 271–280.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet 395 (10223) (2020) 497–506, https://doi.org/10.1016/S0140-6736(20)30183-5.

Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436: 112-116. DOI: 10.1038/nature03712.

Jawetz Melnick & Adelberg’s Medical Microbiology, 27th ed. McGraw-Hill Education, 2016; p. 602-605.

Jawhara S. Could Intravenous Immunoglobulin Collected from recovered coronavirus patients protect against COVID-19 and Strengthen the Immune System of New Patients? Int J Mol Sci 21: 2020.

Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23): 14614–21.

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med [Preprint]. 2020 [cited 2020 Feb 16]: [9 p.]. https://doi.org/10.1056/NEJMoa2001316.

Liu Y, Zhang C, Huang F, Yang Y, Wang F, Yuan J, et al. 2019-novel coronavirus (2019-nCoV) infections trigger an exaggerated cytokine response aggravating lung injury. 2020. http://www.chinaxiv.org/abs/202002.00018.

Lu H, Stratton CW, Tang Y. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol. 2020; 92:401–402. DOI: 10.1002/jmv.25678.

Madjid M, Safavi-Naeini P, Solomon SD et al. Potential Effects of Coronaviruses on the Cardiovascular System. JAMA Cardiol. March 27, 2020. doi:10.1001/jamacardio.2020.1286.

Markel H, Lipman HB, Navarro JA, et al . Non pharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic. JAMA 2007;298:644-54.10.1001/jama.298.6.644 17684187.

Ohtsuki M, Morimoto S-I, Izawa H, et al. Angiotensin converting enzyme 2 gene expression increased compensatory for left ventricular remodeling in patients with end-stage heart failure. International journal of cardiology 2010; 145: 333-334. DOI: 10.1016/j.ijcard.2009.11.057.

Pandey A, Atkins KE, Medlock J, et al . Strategies for containing Ebola in west Africa. Science 2014;346:991-5. 10.1126/science.1260612 25414312.

Prem K, Liu Y, Russell TW, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health 2020; published online March 25. https://doi.org/10.1016/ S2468-2667(20)30073-6.

Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38:1-9. DOI 10.12932/AP-200220-0772.

Qualls N, Levitt A, Kanade N, et al. CDC Community Mitigation Guidelines Work Group. Community mitigation guidelines to prevent pandemic influenza-United States, 2017. MMWR Recomm Rep 2017;66:1-34. 10.15585/mmwr.rr6601a1 28426646.

Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020; 382: 970–71.

Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol. 2005; 287: 31–55.

The National Institute of Infectious Diseases, Japan. Field briefing: Diamond Princess COVID-19 cases. Feb 19, 2020. https://www.niid.go.jp/niid/en/2019-ncov-e/9407-covid-dp-fe-01.html (accessed March 16, 2020).

Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol. 2020. doi.org/10.1128/JVI.00127-20.

Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol. 2018; 419: 1–42.

WHO (2020 a). Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations. Geneva: World Health Organization; 2020. https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations

WHO (2020 b). Coronavirus disease 2019 (COVID-19). Situation report 01, 20 January, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn=20a99c10_4

WHO (2020 c). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). February, 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf.

WHO (2020 d). Coronavirus disease 2019 (COVID-19). Situation report 73, 2 April, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200402-sitrep-73-covid-19.pdf?sfvrsn=5ae25bc7_2

WHO (2020 e). Coronavirus disease 2019 (COVID-19). Situation report 15, 04 February, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200204-sitrep-15-ncov.pdf?sfvrsn=88fe8ad6_4

WHO (2020 f). Coronavirus disease 2019 (COVID-19). Situation report 05, 25 January, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200125-sitrep-5-2019-ncov.pdf?sfvrsn=429b143d_8

WHO (2020 g). Coronavirus disease 2019 (COVID-19). Situation report 51, 11 March, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10

WHO (2020 h). Coronavirus disease 2019 (COVID-19). Situation report 88, 18 April, 2020.https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200417-sitrep-88-covid-191b6cccd94f8b4f219377bff55719a6ed.pdf

Wrapp D, Wang N, Corbett KS, et al. Corornavirus Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020 (367): 1260–1263

Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of areport of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; published online Feb 24. DOI:10.1001/jama.2020.2648.

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020. doi.org/10.1038/s41586-020-2012-7.

Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med. 2020.https://doi.org/10.1056/NEJMc2001737.

 

 

Virologia e Biologia Molecular

Imagem de microscópio eletrónico de transmissão mostrando o SARS-CoV-21

 

Pedro Magalhães1, Madalena Chimpolo2, Daniel Pires Capingana3 

1Departamento de Fisiologia da Faculdade de Medicina da Universidade Agostinho Neto

2Departamento de Morfologia da Faculdade de Medicina da Universidade Agostinho Neto

3Instituto Superior de Ciências de Saúde do Cuando Cubango

Duma forma geral os coronavírus são partículas sob a forma de envelope de 120 a 160 nanômetros (nm), que contêm um genoma em fita simples, não segmentado de sentido positivo de RNA (27–32 kb), sendo o maior genoma entre os vírus RNA. Os genomas são poliadenilados na extremidade 3’. O RNA isolado é infeccioso. O seu nucleocapsídeo helicoidal tem um diâmetro de 9-11 nm. Na superfície do envelope, os vírus possuem projecções amplamente espaçadas, em forma de taco ou pétala, com 20 nm de comprimento, parecendo uma coroa solar (Jawetz Melnick & Adelberg’s, 2016; p. 601).

As proteínas estruturais virais incluem uma proteína nucleocapsíde fosforilada (N), de 50 a 60 kDa (N), uma glicoproteína de 20–35 kDa (M) que serve como proteína da membrana incorporada na bicamada lipídica do envelope e interagindo com o nucleocápside, e a glicoproteína espiga (S; 180-220 kDa) que compõe os peplomeros em forma de pétala. Alguns vírus, incluindo os coronavírus humanos OC43 (HCoV-OC43), contêm uma terceira glicoproteína (HE; 65 kDa) que causa hemaglutinação e possui actividade acetilesterase (Jawetz Melnick & Adelberg’s, 2016; p. 601).

Estrutura do SARS-CoV-22

A ordem dos genes para a codificação de proteínas por todos os coronavírus é Pol-S-E-M-N-3’. Vários pontos abertos de leitura que codificam as proteínas não estruturais e as proteínas HE diferem em número e ordem genética entre os coronavírus. O vírus da SARS, por exemplo, contém um número relativamente grande de genes intercalados para proteínas não estruturais na extremidade 3’ do genoma (Jawetz Melnick & Adelberg’s, 2016; p. 601).

 

REPLICAÇÃO DOS VÍRUS

Como se sabe, os vírus são parasitas intracelulares obrigatórios. Isso significa que não podem viver fora das células hospedeiras. Para a sua replicação, o vírus liga-se aos receptores nas células-alvo através da glicoproteína do envelope viral (S ou HE). O receptor para o coronavírus humano 229E é a aminopeptidase N, enquanto que o receptor funcional para a doença respiratória aguda grave causada por coronavirus (SARS-CoV) é a enzima conversora da angiotensina II (ACE2). O receptor para MERS-CoV é a dipeptil peptidase 4, também conhecida como CD26 (Jawetz Melnick & Adelberg’s, 2016; p. 601).

A glicoproteína S causa a fusão do envelope viral com membrana da célula hospedeira para depois se replicar dentro das células infectadas. Essa fusão ocorre em presença de um pH maior ou igual a 6,5.

Deve-se realçar as duas características do coronavirus que são importantes do ponto de vista epidemiológico e clínico, que são (Jawetz Melnick & Adelberg’s, 2016; p. 601): (a) uma elevada frequência de mutação durante cada ciclo de replicação incluindo a geração de um alta incidência de mutações por delecção; (b) alta frequência de recombinação durante a replicação (isto é incomum para um vírus RNA com um genoma não segmentado e pode contribuir para a evolução de novas estirpes de vírus). Essa última característica pode estar na base do surgimento do novo coronavirus responsável pela actual pandemia de COVID-19. Por outro lado, chama atenção para que não seja descurada a possibilidade de novos surtos no futuro se não forem controlados os factores deflagrantes de surtos por vírus desta espécie, a partir de qualquer parte do mundo.

No caso particular, a pandemia COVID-19 é causada por um coronavirus que sofreu mutação antigénica. Por essa razão é novo para a espécie humana, e, deste modo, não existe ainda nenhum tipo de imunidade contra esse vírus, o que justifica a sua rápida disseminação ao ponto de tornar-se uma pandemia.

  

DIAGNÓSTICO

Critérios para o diagnóstico

O diagnóstico da COVID-19 baseia-se nos critérios clínico-epidemiológico e laboratorial mediante a realização de uma reacção em cadeia de polimerase com transcrição reversa em tempo real (rRT-PCR) (Sohrabi et al., 2020).

Segundo a Organização Mundial da Saúde (OMS), define-se caso suspeito de COVID-19 em qualquer uma das seguintes situações (WHO, 2020):

  • O paciente com febre que apresentar pelo menos um sinal ou sintoma respiratório (tosse, dificuldade para respirar, adejo nasal, dentre outros) ou histórico de viagem ou residência para área com transmissão local da doença conhecida nos últimos 14 dias anteriores ao aparecimento dos sinais ou sintomas;
  • O paciente com febre que apresente pelo menos um sinal ou sintoma respiratório (tosse, dificuldade para respirar, adejo nasal, dentre outros) ou histórico de contacto próximo com caso confirmado ou provável COVID-19, nos últimos 14 dias anteriores ao aparecimento dos sinais ou sintomas;
  • O paciente que se apresente com um quadro de doença respiratória aguda grave (febre e pelo menos um dos sintomas e sinais de doença respiratória, ex: tosse, dificuldade para respirar, adejo nasal) e necessidade de internamento hospitalar e ausência de diagnóstico alternativo que justifique o quadro clínico do paciente.

São elegíveis para realizar o teste laboratorial para a COVID-19 todos os pacientes que se enquadram nos três grupos acima mencionados, isto é, (a) indivíduos sintomáticos ou assintomáticos que tenham estado em locais com infecção comunitária, (b) indivíduos que tenham tido contacto com pessoa suspeita ou com doente de COVID-19, (c) indivíduos que se apresentem com um quadro de doença respiratória aguda grave sem causa aparente.

Por outro lado, devem ser elegíveis para o teste, os casos prováveis, isto é, os casos suspeitos cujo resultado de teste laboratorial para o COVID-19 tenha sido inconclusivo ou os casos suspeitos que por alguma razão não tenham sido submetidos ao teste laboratorial para o COVID-19.

Contudo, sugere-se que cada país deva definir as situações que devem ser sujeitas a testes laboratoriais, em função da intensidade da transmissão, do número de casos e da capacidade laboratorial. Neste sentido recomenda-se que a prioridade para a realização dos testes devam ser os casos suspeitos de COVID-19.

O diagnóstico definitivo de infecção pelo SARS-CoV-2 é estabelecido com base no resultado conclusivo positivo em RT-PCR, independentemente dos sinais e sintomas (Sohrabi et al., 2020).

1- https://thebiologist.rsb.org.uk/biologist/158-biologist/features/2309-focus-on-cov-sars-2
2- https://www.ncbi.nlm.nih.gov/books/NBK554776/figure/article-52171.image.f3/

 

REFERÊNCIAS BIBLIOGRÁFICAS

Jawetz, Melnick, & Adelberg’s. Medical Microbiology. McGraw-Hill Education (2016). 27th Edition. P 602-605.

World Health Organization (2020). Global surveillance for COVID-19 caused by human infection with COVID-19 virus: interim guidance https://www.who.int/publications-detail/global-surveillance-for-human-infection-with-novel-coronavirus-(2019-ncov).

Sohrabi C, Alsafi Z, O'Neill N, Khan M, Kerwan A, Al-Jabir A, Iosifidis C, Agha R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). International Journal of Surgery. 2020; 76: 71–76 https://doi.org/10.1016/j.ijsu.2020.02.034

 

 

 

 

Assinar este feed RSS

Links Úteis

Links Externos

Contactos

Redes Sociais